Copied to
clipboard

G = C22xC4oD8order 128 = 27

Direct product of C22 and C4oD8

direct product, p-group, metabelian, nilpotent (class 3), monomial

Aliases: C22xC4oD8, D8:7C23, C4.4C25, C8.20C24, Q16:7C23, D4.2C24, Q8.2C24, SD16:6C23, C24.145D4, D8o(C22xC4), C4o(C22xD8), Q16o(C22xC4), C4o(C22xQ16), (C2xC8):15C23, (C23xC8):11C2, C4oD4:4C23, C4o(C22xSD16), SD16o(C22xC4), (C22xD8):24C2, (C2xD8):59C22, C4.30(C22xD4), C2.39(D4xC23), (C2xC4).610C24, (C22xC8):67C22, (C22xQ16):24C2, (C2xQ16):63C22, (C22xC4).630D4, C23.410(C2xD4), C22.5(C22xD4), (C22xSD16):30C2, (C2xSD16):82C22, (C2xD4).490C23, (C2xQ8).474C23, (C23xC4).714C22, (C22xC4).1592C23, (C22xD4).603C22, (C22xQ8).504C22, C4o(C2xC4oD8), (C2xC4)o2(C2xD8), (C2xC4)o(C4oD8), (C2xC4)o2(C2xQ16), (C2xC4)o(C22xD8), (C22xC4)o(C2xD8), (C2xC4)o2(C2xSD16), (C2xC4)o(C22xQ16), (C22xC4)o(C2xQ16), (C2xC4).883(C2xD4), (C22xC4)o(C2xSD16), (C2xC4)o(C22xSD16), (C22xC4)o(C22xD8), (C2xC4oD4):76C22, (C22xC4oD4):25C2, (C22xC4)o(C22xQ16), (C22xC4)o(C22xSD16), (C2xC4)o(C2xC4oD8), SmallGroup(128,2309)

Series: Derived Chief Lower central Upper central Jennings

C1C4 — C22xC4oD8
C1C2C4C2xC4C22xC4C23xC4C22xC4oD4 — C22xC4oD8
C1C2C4 — C22xC4oD8
C1C22xC4C23xC4 — C22xC4oD8
C1C2C2C4 — C22xC4oD8

Generators and relations for C22xC4oD8
 G = < a,b,c,d,e | a2=b2=c4=e2=1, d4=c2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c2d3 >

Subgroups: 1148 in 752 conjugacy classes, 436 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C23, C2xC8, D8, SD16, Q16, C22xC4, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4oD4, C24, C24, C22xC8, C22xC8, C2xD8, C2xSD16, C2xQ16, C4oD8, C23xC4, C23xC4, C22xD4, C22xD4, C22xQ8, C2xC4oD4, C2xC4oD4, C23xC8, C22xD8, C22xSD16, C22xQ16, C2xC4oD8, C22xC4oD4, C22xC4oD8
Quotients: C1, C2, C22, D4, C23, C2xD4, C24, C4oD8, C22xD4, C25, C2xC4oD8, D4xC23, C22xC4oD8

Smallest permutation representation of C22xC4oD8
On 64 points
Generators in S64
(1 28)(2 29)(3 30)(4 31)(5 32)(6 25)(7 26)(8 27)(9 56)(10 49)(11 50)(12 51)(13 52)(14 53)(15 54)(16 55)(17 48)(18 41)(19 42)(20 43)(21 44)(22 45)(23 46)(24 47)(33 58)(34 59)(35 60)(36 61)(37 62)(38 63)(39 64)(40 57)
(1 12)(2 13)(3 14)(4 15)(5 16)(6 9)(7 10)(8 11)(17 60)(18 61)(19 62)(20 63)(21 64)(22 57)(23 58)(24 59)(25 56)(26 49)(27 50)(28 51)(29 52)(30 53)(31 54)(32 55)(33 46)(34 47)(35 48)(36 41)(37 42)(38 43)(39 44)(40 45)
(1 59 5 63)(2 60 6 64)(3 61 7 57)(4 62 8 58)(9 21 13 17)(10 22 14 18)(11 23 15 19)(12 24 16 20)(25 39 29 35)(26 40 30 36)(27 33 31 37)(28 34 32 38)(41 49 45 53)(42 50 46 54)(43 51 47 55)(44 52 48 56)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 11)(2 10)(3 9)(4 16)(5 15)(6 14)(7 13)(8 12)(17 57)(18 64)(19 63)(20 62)(21 61)(22 60)(23 59)(24 58)(25 53)(26 52)(27 51)(28 50)(29 49)(30 56)(31 55)(32 54)(33 47)(34 46)(35 45)(36 44)(37 43)(38 42)(39 41)(40 48)

G:=sub<Sym(64)| (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,56)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,48)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,57), (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11)(17,60)(18,61)(19,62)(20,63)(21,64)(22,57)(23,58)(24,59)(25,56)(26,49)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55)(33,46)(34,47)(35,48)(36,41)(37,42)(38,43)(39,44)(40,45), (1,59,5,63)(2,60,6,64)(3,61,7,57)(4,62,8,58)(9,21,13,17)(10,22,14,18)(11,23,15,19)(12,24,16,20)(25,39,29,35)(26,40,30,36)(27,33,31,37)(28,34,32,38)(41,49,45,53)(42,50,46,54)(43,51,47,55)(44,52,48,56), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,11)(2,10)(3,9)(4,16)(5,15)(6,14)(7,13)(8,12)(17,57)(18,64)(19,63)(20,62)(21,61)(22,60)(23,59)(24,58)(25,53)(26,52)(27,51)(28,50)(29,49)(30,56)(31,55)(32,54)(33,47)(34,46)(35,45)(36,44)(37,43)(38,42)(39,41)(40,48)>;

G:=Group( (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,56)(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,48)(18,41)(19,42)(20,43)(21,44)(22,45)(23,46)(24,47)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,57), (1,12)(2,13)(3,14)(4,15)(5,16)(6,9)(7,10)(8,11)(17,60)(18,61)(19,62)(20,63)(21,64)(22,57)(23,58)(24,59)(25,56)(26,49)(27,50)(28,51)(29,52)(30,53)(31,54)(32,55)(33,46)(34,47)(35,48)(36,41)(37,42)(38,43)(39,44)(40,45), (1,59,5,63)(2,60,6,64)(3,61,7,57)(4,62,8,58)(9,21,13,17)(10,22,14,18)(11,23,15,19)(12,24,16,20)(25,39,29,35)(26,40,30,36)(27,33,31,37)(28,34,32,38)(41,49,45,53)(42,50,46,54)(43,51,47,55)(44,52,48,56), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,11)(2,10)(3,9)(4,16)(5,15)(6,14)(7,13)(8,12)(17,57)(18,64)(19,63)(20,62)(21,61)(22,60)(23,59)(24,58)(25,53)(26,52)(27,51)(28,50)(29,49)(30,56)(31,55)(32,54)(33,47)(34,46)(35,45)(36,44)(37,43)(38,42)(39,41)(40,48) );

G=PermutationGroup([[(1,28),(2,29),(3,30),(4,31),(5,32),(6,25),(7,26),(8,27),(9,56),(10,49),(11,50),(12,51),(13,52),(14,53),(15,54),(16,55),(17,48),(18,41),(19,42),(20,43),(21,44),(22,45),(23,46),(24,47),(33,58),(34,59),(35,60),(36,61),(37,62),(38,63),(39,64),(40,57)], [(1,12),(2,13),(3,14),(4,15),(5,16),(6,9),(7,10),(8,11),(17,60),(18,61),(19,62),(20,63),(21,64),(22,57),(23,58),(24,59),(25,56),(26,49),(27,50),(28,51),(29,52),(30,53),(31,54),(32,55),(33,46),(34,47),(35,48),(36,41),(37,42),(38,43),(39,44),(40,45)], [(1,59,5,63),(2,60,6,64),(3,61,7,57),(4,62,8,58),(9,21,13,17),(10,22,14,18),(11,23,15,19),(12,24,16,20),(25,39,29,35),(26,40,30,36),(27,33,31,37),(28,34,32,38),(41,49,45,53),(42,50,46,54),(43,51,47,55),(44,52,48,56)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,11),(2,10),(3,9),(4,16),(5,15),(6,14),(7,13),(8,12),(17,57),(18,64),(19,63),(20,62),(21,61),(22,60),(23,59),(24,58),(25,53),(26,52),(27,51),(28,50),(29,49),(30,56),(31,55),(32,54),(33,47),(34,46),(35,45),(36,44),(37,43),(38,42),(39,41),(40,48)]])

56 conjugacy classes

class 1 2A···2G2H2I2J2K2L···2S4A···4H4I4J4K4L4M···4T8A···8P
order12···222222···24···444444···48···8
size11···122224···41···122224···42···2

56 irreducible representations

dim1111111222
type+++++++++
imageC1C2C2C2C2C2C2D4D4C4oD8
kernelC22xC4oD8C23xC8C22xD8C22xSD16C22xQ16C2xC4oD8C22xC4oD4C22xC4C24C22
# reps111212427116

Matrix representation of C22xC4oD8 in GL4(F17) generated by

16000
01600
00160
00016
,
16000
0100
0010
0001
,
16000
01600
0040
0004
,
16000
0100
00314
0033
,
16000
01600
00314
001414
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,16,0,0,0,0,4,0,0,0,0,4],[16,0,0,0,0,1,0,0,0,0,3,3,0,0,14,3],[16,0,0,0,0,16,0,0,0,0,3,14,0,0,14,14] >;

C22xC4oD8 in GAP, Magma, Sage, TeX

C_2^2\times C_4\circ D_8
% in TeX

G:=Group("C2^2xC4oD8");
// GroupNames label

G:=SmallGroup(128,2309);
// by ID

G=gap.SmallGroup(128,2309);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,-2,477,352,4037,2028,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^4=e^2=1,d^4=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^2*d^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<